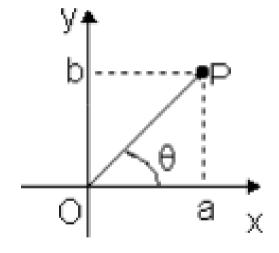
Sistemas de Coordenadas Polares

Prof. Rossini Bezerra

Faculdade Boa Viagem

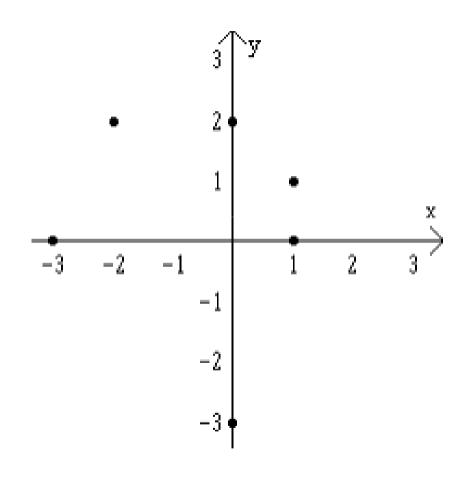
Coordenadas Polares

- Dado um ponto P do plano, utilizando coordenadas cartesianas (retangulares), descrevemos sua localização no plano escrevendo P = (a,b) onde a é a projeção de P no eixo x e b, a projeção no eixo y.
- Podemos também descrever a localização de P, a partir da distância de P à origem O do sistema, e do ângulo formado pelo eixo x e o segmento OP, caso P≠O.
- Denotamos P = (r,θ) onde r é a distância de P a O e θ o ângulo tomado no sentido anti–horário, da parte positiva do eixo Ox ao segmento OP, caso P≠O.
- Se P = O, denotamos P = $(0,\theta)$, para qualquer θ .
- Esta maneira representar o plano é chamada Sistema de Coordenadas Polares.



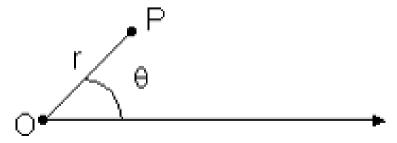
Exemplos

Coordenadas	Coordenadas
cartesianas	polares
(1,0)	(1,0)
(0,2)	(2,π/2)
(-3,0)	(3,π)
(0,-3)	(3,3π/2)
(1,1)	$(\sqrt{2}, \pi/4)$
(-2,-2)	$2\sqrt{2}$,3 π /4)



Polo e Eixo Polar

- Para representar pontos em coordenadas polares, necessitamos somente de um ponto O do plano e uma semi-reta com origem em O.
- Representamos abaixo um ponto P de coordenadas polares (r,θ), tomando o segmento OP com medida r.
- *Polo* é o ponto fixo em O
- A semi–reta é chamada de <u>eixo polar</u>.



Classe de pares Ordenados

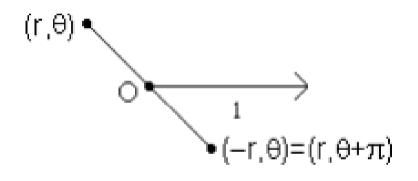
- Em coordenadas polares, podemos ter representações diferentes para um mesmo ponto, isto é, podemos ter P = (r,θ) e P = (s,α) sem que r = s e $\theta = \alpha$, ou seja (r,θ) = (s,α) não implica em r = s e $\theta = \alpha$.
- Assim, (r,θ) não representa um par ordenado, mas sim uma classe de pares ordenados, representando um mesmo ponto
- Denotamos um ponto P por $(r,-\theta)$, para r e θ positivos, se θ é tomado no sentido horário.
- Assim, $(r,-\theta) = (r,2\pi-\theta)$ e $(r,-\theta)$ é o simétrico de (r,θ) em relação à reta suporte do eixo polar

Exemplo

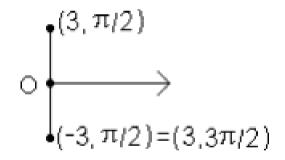
•
$$(1,-\pi/4) = (1, 7\pi/4)$$

Simetria

• Denotamos P por $(-r,\theta)$, para r positivo, se P = $(r,\pi + \theta)$, ou seja, consideramos $(-r,\theta)$ = $(r,\theta+\pi)$. Assim, $(-r,\theta)$ é o simétrico de (r,θ) em relação ao <u>polo</u>.



EXEMPLO:($3,\pi/2$) = ($-3,3\pi/2$)



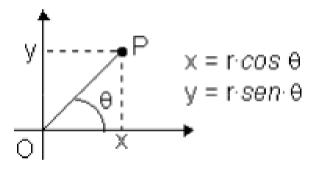
- Dado um ângulo θ , θ pode ser representado por θ +2k π , para todo k inteiro. Assim,
- $(r,\theta) = (r,\theta+2\pi) = (r,\theta+4\pi) = (r,\theta-2\pi) = (r,\theta-4\pi) = ...$

Mudança de Coordenadas

 Um ponto P do plano pode ser representado em coordenadas cartesianas por (x,y) ou em coordenadas polares por (r,θ). Para facilidade de comparação entre os dois sistemas, consideramos o ponto O coincidindo com a origem do sistema cartesiano e, a semi-reta, a parte do não negativa do eixo x.

Mudança de Coordenadas Polares para Coordenadas Cartesianas

• Seja P um ponto com coordenadas polares (r,θ) . Se $0 < \theta < \pi/2$ e r > 0. No triângulo retângulo <u>OPx</u> a seguir, obtemos as seguintes relações:



- Se θ = 0 e r > 0, temos P no eixo das abcissas. Logo, P tem coordenadas
- cartesianas (x,0) e coordenadas polares (x,0) (r = x e θ = 0). Assim, x = x·1 = r cos θ e y = 0 = r sen θ .
- Se r = 0, $P = (0,\theta)$ para qualquer θ . Aqui também, $x = r \cos \theta$ e $y = r \sin \theta$.
- Para os casos onde $\theta \ge \pi/2$, fica como exercício mostrar que também vale:
- $x = r \cos \theta = y = r \sin \theta$.

Mudança de Coordenadas Cartesianas para Coordenadas Polares

- Seja P um ponto com coordenadas cartesianas (x,y). Como vimos acima, considerando P com coordenadas (r,θ), temos as relações x = r.cosθ e y = r.senθ
- Como $x^2+y^2=r^2.\cos^2\theta + r^2.\sin^2\theta = r^2(\cos^2\theta + \sin^2\theta)$ = $r^2.1=r^2$
- $r^2 = x^2 + y^2 = r = (x^2 + y^2)^{1/2}$
- Se r = 0, isto é, x = y = 0 então podemos tomar θ qualquer. Se $r \neq 0$, θ é tal que $\cos\theta = x/r$ e $\sin\theta = y/r$.

EXEMPLO

- 1. A circunferência de centro na origem e raio 3 tem equação cartesiana $x^2+y^2=9$. Como $x=r\cos\theta$ e $y=r\sin\theta$ então $r^2=9$, ou seja, r=3 é a equação polar dessa circunferência.
- 2. Se P tem coordenadas cartesianas (-1,1) então $r^2 = (-1)^2 + 1^2$, ou seja, $r = 2^{1/2}$. Como $\cos\theta = -1/2^{1/2} = -2^{1/2}/2$; $\sin\theta = 1/2^{1/2} = 2^{1/2}/2$. então $\theta = 3\pi/4$. Assim, P temo como coordenadas polares, (2, $\frac{3}{4}\pi$)
- Logo, podemos também transformar equações cartesianas em polares e vice-versa

Lista Exercício 3

Transforme coordenadas cartesianas em coordenadas polares:

a)
$$(1,1)$$
 b) $(2,-2)$ c) $(\sqrt{3},1)$ d) $(4,0)$ e) $(0,-3)$

$$e)(0,-3)$$

2) Transforme coordenadas polares em coordenadas cartesianas:

a)
$$(1,\pi/2)$$

a)
$$(1,\pi/2)$$
 b) $(-2,49\pi/6)$ c) $(3,-5\pi/3)$ d) $(0,\pi/9)$ e) $(7,\pi)$

c)
$$(3,-5\pi/3)$$

d)
$$(0,\pi/9)$$

Encontre a equação polar para cada uma das seguintes equações cartesianas.

a)
$$(x-1)^2 + y^2 = 1$$

a)
$$(x-1)^2 + y^2 = 1$$
 b) $(x+2)^2 + (y-3)^2 = 13$ c) $x = -2$ d) $y = 3$ e) $y = x$

c)
$$x = -2$$

d)
$$y = 3$$

$$e) y = x$$

Encontre a equação cartesiana para cada uma das seguintes equações polares.

a)
$$r = 5$$

b)
$$r = 2sen \theta$$

a)
$$r = 5$$
 b) $r = 2sen \theta$ c) $r = 2cos \theta - 4sen \theta$ d) $\theta = \pi/3$ e) $sen \theta = cos \theta$

d)
$$\theta = \pi/3$$

e) sen
$$\theta = \cos \theta$$

f)
$$r = \frac{2}{3 \sin \theta - 5 \cos \theta}$$

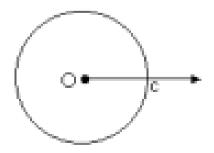
5) Encontre as equações polares das seguintes curvas:

a) da elipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

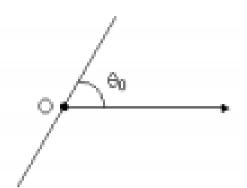
a) da elipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 b) da hipérbole $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ c) da parábola $y = x^2$.

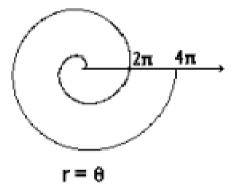
Gráficos em Coordenadas Polares

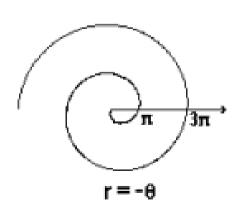
- Como no caso de equações cartesianas, um ponto P está no gráfico da curva de equação $r = f(\theta)$ se, e somente se, $P = (r, f(\theta))$. O uso de coordenadas polares simplifica, em alguns casos, equações de curvas. Apresentaremos alguns exemplos abaixo.
- Exemplo 1 R = c, c uma constante positiva. Esta equação representa os pontos do plano, cuja distância ao polo é igual a c, isto é, representa a circunferência de raio c e centro no polo. Observe que r=-c representa a mesma circunferência.



- Exemplo 2 $\theta = \theta_0$ onde $\theta_0 \ge 0$. Esta equação representa os pontos P = (r,θ_0) onde r é um número real qualquer. Logo, $\theta = \theta_0$ representa um reta passando pelo polo e que forma um ângulo de θ_0 com o eixo polar.
- Exemplo 3 r = θ , $\theta \ge 0$. Representa os pontos P = (r,r) onde $r \ge 0$, ou seja, os pontos P tais que a distância de P ao polo é igual ao ângulo, em radianos, entre o eixo polar e o segmento OP. A equação geral da espiral é dada por r = $a\theta$, considerando $\theta \ge 0$. Ao lado temos os gráficos de $r = \theta$ e $r = -\theta$, para $0 \le \theta \le 4\pi$





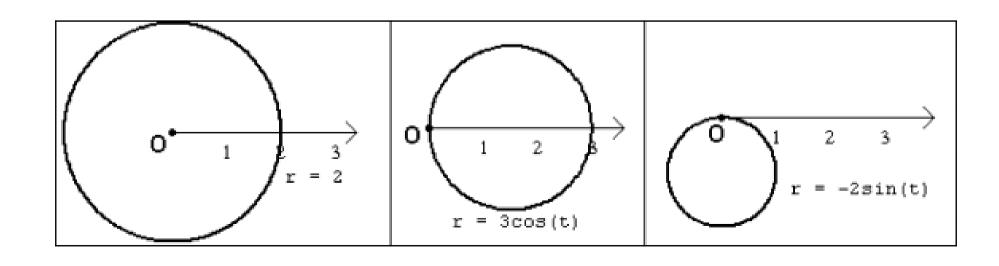


Procedimentos para Traçar Gráficos

- 1) Verificar se existem simetrias, isto é, se a equação se altera ao trocar:
 - a) θ por - θ : simetria em relação à reta θ = 0 (eixo x)
 - b) θ por π−θ: simetria em relação à reta θ = π/2 (eixo y)
 - c) θ por π +θ: simetria em relação ao polo. É equivalente a trocar r por -r, pois (-r,θ) = (r,θ+ π). Logo (r,θ) = (-r,θ) \Leftrightarrow (r,θ) = (r,θ+ π).
- 2) Verificar se a curva passa pelo polo (r = 0)
- 3) Determinar os pontos da curva variando θ a partir de θ = 0
- 4) Verificar a existência de pontos críticos (máximos e mínimos): $f(\theta)' = 0$ e $f''(\theta) > 0 \Rightarrow \theta$ é um mínimo relativo; $f(\theta)' = 0$ e $f''(\theta) < 0 \Rightarrow \theta$ é um máximo relativo.
- 5) Verificar se r não se altera ao trocar θ por θ +2 π . Caso não haja alteração, basta variar θ entre 0 e 2 π .

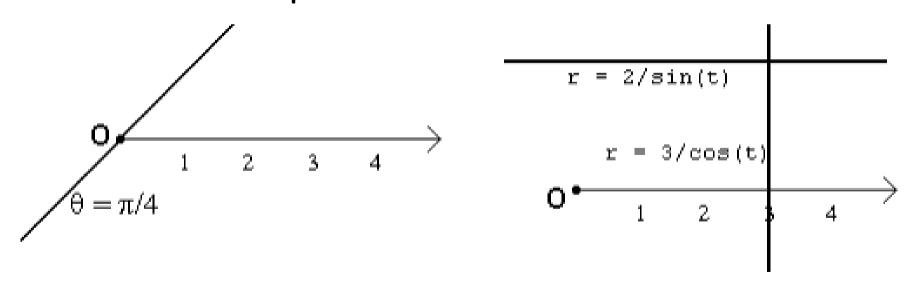
Equações de algumas curvas especiais em coordenadas polares: Circunferências

- a) r = c: circunferência com centro no polo e raio |c|.
- b) $r = a \cos(\theta)$: circunferência com centro na reta $\theta = 0$, passando pelo polo e raio |a|/2.
- c) $r = a sen(\theta)$: circunferência com centro na reta $\theta = \pi/2$, passando pelo polo e raio |a|/2.



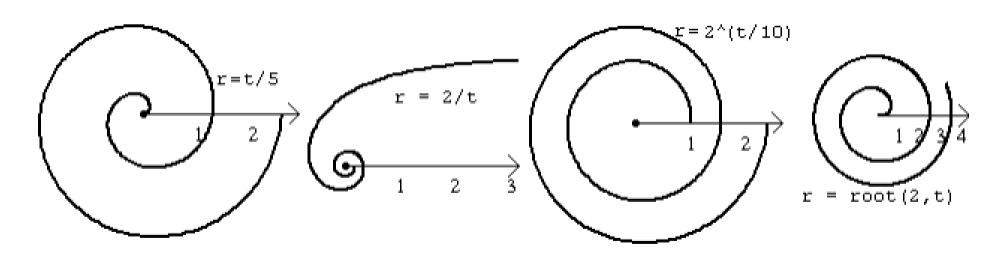
Equações de algumas curvas especiais em coordenadas polares: Retas

- a) θ = a: reta passando pelo pólo
- b) $r sen(\theta) = a$: reta paralela ao eixo polar
- c) $r cos(\theta) = a$: reta perpendicular à reta que contém o eixo polar



Equações de algumas curvas especiais em coordenadas polares: Espirais

- a) $r = a\theta$: espiral de Arquimedes
- b) $r = a/\theta$: espiral hiperbólica
- c) $r = a^{b\theta}$, a > 0: espiral logarítmica
- d) $r = a.(\theta)^{1/n}$: espiral parabólica quando n = 2



Equações de algumas curvas especiais em coordenadas polares: Rosáceas

r = asen(nθ) ou r = acos(nθ), n inteiro positivo, a \neq 0. Se n é par, o gráfico consiste de 2n laços. Se n é ímpar, o gráfico consiste de n laços. Observe que se n = 0 ou n = \pm 1, obtém-se equações de circunferências ou o pólo (caso r = asen(nt)).

